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Abstract

High dimensional (HD) data, where the number of covariates and/or meaningful covariate interactions might
exceed the number of observations, is increasing used in prediction in the social sciences. An important question
for the researcher is how to select the most predictive covariates among all the available covariates. Common
covariate selection approaches use ad hoc rules to remove noise covariates, or select covariates through the
criterion of statistical significance or by using machine learning techniques. These can suffer from lack of
objectivity, choosing some but not all predictive covariates, and failing reasonable standards of consistency that
are expected to hold in most high-dimensional social science data. The literature is scarce in statistics that can
be used to directly evaluate covariate predictivity. We address these issues by proposing a variable screening
step prior to traditional statistical modeling, in which we screen covariates for their predictivity. We propose the
influence (I) statistic to evaluate covariates in the screening stage, showing that the statistic is directly related
to predictivity and can help screen out noisy covariates and discover meaningful covariate interactions. We
illustrate how our screening approach can removing noisy phrases from U.S. Congressional speeches and rank
important ones to measure partisanship. We also show improvements to out-of-sample forecasting in a state
failure application. Our approach is applicable via an open-source software package.

1 Introduction

Prediction has gained prominence in the social sciences as scholars have become increasingly interested in fore-

casting events such as conflict (Colaresi and Mahmood, 2017; Beck, King and Zeng, 2000), state failure (Goldsmith

et al., 2013; Brandt, Freeman and Schrodt, 2014; King and Zeng, 2001; Esty et al., 1999), elections (Lewis-Beck,

Michael S; Tien, 2012; Lockerbie, 2008), and recessions (Dominguez and Shapiro, 2016; Stock and Watson, 2002).

Many forecasting efforts now use big data. This is exemplified in the growing popularity of analyses of text data

(Lucas et al., 2015), social media data (Wilson, Gosling and Graham, 2012), and larger cross country observational

studies (e.g. Demographic and Health Surveys, Afrobarometer). Big datasets are often high dimensional (HD):
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they feature more covariates than observations.1 This makes finding important covariates, covariate interactions,

and accounting for their possible nonlinearities difficult to do in a principled manner.

Often social scientists can draw on a body of qualitative and quantitative research that explains the outcome

phenomenon, and so one common approach to handle HD data is to select covariates theorized to influence the

outcome variable, possibly informed by qualitative and quantitative literature surrounding the outcome. However,

this approach may not select the most predictive variables. We may not reliably produce theories to cover the

expanse of possible covariates that influence the outcome (see Ward, Greenhill and Bakke (2010) for a treatment of

this phenomenon in forecasting conflict). A related approach is to select covariates based on associations between

covariates and the outcome, or other correlation-based statistics. We demonstrate in other work, however, that

covariates that are highly predictive for an outcome may not necessarily be statistically significant, and may evade

the researcher relying on such association-based statistics (Lo et al., 2015).

Another broad category of approaches that is quickly growing in popularity is rather than selecting covariates

using theories about the outcome, to rely on machine learning (ML) techniques to data mine for relevant covariates.

Most of these approaches, such as random forests and lasso, were designed to handle large numbers of covariates.

Rather than hand-picking a (possibly still large) list of covariates believed to be marginally or jointly related to the

outcome in likely nonlinear ways, we rely on machine learning algorithms to do so for us. This has led to exciting

advances in political forecasting, with works harnessing neural networks (inter alia, King and Zeng (2001)), random

forests (Muchlinski, Siroky and Kocher, 2015), and lasso-type models. However, machine learning techniques

are not directly applicable in every context. If the dimensions are sufficiently large compared to the number of

observations, even ML techniques can be difficult to apply without dimension reduction. As dimensionality (the

number of covariates compared to number of observations) grows, the curse of dimensionality can render dimension

reduction prior to applying the preferred ML approach directly more attractive (see inter alia (Fan and Lv, 2008)).

This problem is further complicated if there are many covariate interactions to consider — also referred to as ‘higher

order interactions’ throughout this article — as these may become more relevant in certain applications where it is

likely that many factors influence the outcome; accounting for interactions grows dimensionality mechanically.

This article contributes to the high dimensional prediction literature in social sciences through the introduction

of a simple, data-driven covariate screening step that evaluates covariate sets based on their estimated levels of

predictivity. We propose incorporating this covariate screening step prior to the model selection and model fitting

step to reduce the number of covariates, thereby reducing the high dimensional problem to a low dimensional

one. Specifically, we suggest applying a single influence statistic to evaluate covariates for their predictivity. For

researchers interested in applying their preferred machine learning approach, this would entail simply including a

screening step of all covariates and covariate interactions, prior to their usual ML modeling step. The workhorse

1By high dimensionality, we follow Fan and Lv (2008) to mean that dimensionality grows exponentially in the sample size, log p = O(nη)
for some η ∈ (0, 1/2).
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of our proposed covariate screening step is an influence statistic (“I-statistic”) that is a nonparametric, lower-bound

estimate of covariate predictivity. This statistic can evaluate predictivity both for covariates marginally related to

the outcome of interest and for interacting covariates with no marginal relationship to the outcome. It also does

not suffer from the problem of indiscriminate growth with the inclusion of additional covariates. We illustrate with

simulations in Section 4 how the statistic can a) distinguish between noisy covariates and important covariates and

b) recover covariates with joint but no marginal relationships with the outcome variable. We provide a simple

workflow diagram for the applied researcher interested in dimension reduction for her high dimensional prediction

problem.

The article is organized as follows. We first discuss how our proposed approach contributes to the literature

on data-driven covariate screening. We review the common approaches to covariate screening with high dimen-

sional data: theory-guided selection of covariates and machine learning approaches, and highlight our novel use of

a screening statistic that is directly related to how predictive a covariate or set of covariates is. We lay the ground-

work for understanding what predictivity of a covariate means precisely, by defining predictivity as a parameter

of interest. We note that a naive sample estimator of the parameter cannot serve as a helpful criterion to evaluate

covariates because the estimator grows indiscriminately with the number of covariates. We then introduce the I

statistic as an appropriate alternative with accompanying simulations.

We then illustrate the possible advantages of adding a covariate screening step and utilizing the influence statis-

tic for high dimensional prediction with two applications. The first application screens a large corpus of text drawn

from U.S. Congressional speeches from 1873-2016 to determine whether screening results in removal of noise

phrases and retention of partisan phrases reflective of important debates throughout history. Specifically, we follow

Gentzkow, Shapiro and Taddy (2016) work on measuring partisanship using speeches on the congressional floor.

Text data such as these are becoming more prevalent in political science research as online access to documents and

different sources of media combined with developments in computational resources has grown. Like Gentzkow,

Shapiro and Taddy (2016), we define measurement of partisanship based on how likely it is to be able to predict

the party label of a speaker given a fixed amount of speech. Being able to predict the party label well reflects a

more partisan Congressional session. To analyze such a large corpus of data, we require restricting the phrases

we consider in each session to nonpartisan, nonprocedural phrases, eliminating any ‘noise’ phrases. We find that

data-driven screening of noise phrases results in 1) sensible capture of phrases pertinent to major debates and 2)

captures patterns of higher partisanship throughout history.

The second application is a classic example of forecasting state failure, using the well-known Political Insta-

bility Task Force dataset (PITF). We adopt the usual goal of such exercises and attempt to forecast country-specific

state failure two years into the future. The PITF data exemplifies a common type of conflict data, with observations

collected at the country-year level and numbering in the thousands, with a rich set of covariates numbering in the
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hundreds. 2 As it is well-known that covariates predicting state failures and conflicts are likely to be both nonlin-

ear and interactive (King and Zeng (2001)), what appears to be a dataset that is not too high dimensional quickly

becomes so with the necessary inclusion of interactions of covariates in possibly nonlinear forms. For instance,

simply accounting for two-and-three-way interactions in the Political Instability Task Force data requires exploring

p = 310, 902, 591 covariates with n = 8, 580 observations.3

In this setting, we show that our covariate screening step improves predictive performance relative to both

theory-guided covariate selection alone, and machine learning techniques alone. Selecting covariates through guid-

ance by theory alone leads us to miss some important predictors. We compare the predictive performance of models

with covariates selected via theory with models with covariates selected via screening for predictive variables and

find that, in general, the latter performs better than the former. We also implement common ML approaches with

and without screening and compare out of sample prediction rates. We find that screening improves the out of

sample prediction rate across a variety of models.

Finally, we discuss the implications of applying covariate screening to prediction exercises and possible exten-

sions to inference-based work.

2 Related literature

A common approach for the applied researcher interested in forecasting some phenomenon is to rely on a preferred

model of choice with which to forecast. Often the evaluation of the forecasting effort is based on testing data, or

data set aside from the model training stage, to properly calculate error rates without the risk of overfitting. A

wide range of possible models are available to the researcher, whose final choice may result from qualitative and

quantitative expertise of the factors that are most important to the outcome. A related, but no less important, choice

the researcher may make is in selecting covariates that enter into the chosen model.

An intuitively attractive and popular approach is to rely on expert knowledge on the substantive topic and select

variables measuring factors known to (causally) influence the outcome. For instance, a number of works in the state

failure literature utilize Bates (2008) work theorizing the importance of the interplay of the size of public revenues,

magnitude of rewards the leadership can gain from plundering of citizen wealth, and the leader’s discount rate in

affecting the likelihood of state failure. Likewise, others build on work by Fearon and Laitin (2003) to predict

conflict, adding covariates that capture variation in recorded human rights repression (Rost, Schneider and Kleibl,

2009).

The literature on elections forecasting features several prominent examples of theoretically-motivated covariate-

choice as well. Lewis-Beck, Michael S; Tien (2012) propose jobs and proxy models that rely on covariates related

to presidential popularity, economic growth, incumbent status, jobs creation, measures of national business condi-

2Accounting for all covariates, including intermediary ones used to develop other variables, there are over one thousand.
3More generally, this is

∑3
k=1

n!
k!(n−k)! where n is the number of covariates and k is the highest order of interactions we are considering.
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tions. Lockerbie (2008) takes a similar approach to identifying the two important variables, citizen evaluations of

their own economic health and the length of service of an incumbent party in the White House, in his forecasting

model for the presidential election.

Similarly, in the choice of financial variables as predictors for recessions, researchers on focused on a hypoth-

esized relationship with domestic spread Bernard and Gerlach (1998), interest rate differential between considered

countries Nyberg (2010), and forward looking variables such as stock market return Estrella and Mishkin (2016)

with likelihood of economic recession. Welch and Goyal (2008) reviews the literature on stock market returns and

finds that variables that are suggested to be good predictors lead to poor in and out-of-sample prediction perfor-

mance.

Theory-guided covariate choice for forecasting models is not limited to the social sciences either. See Jakobs-

dottir et al. (2009) for a survey of the many works in biological sciences and genetics that rely on similar methods

to handpick important covariates to feature in a variety of prediction models.

However, there is evidence that covariates that are theoretically significant in explaining an outcome are not

necessarily good predictors of the outcome. A common decision rule is that empirical evidence supports a particular

theory if it passes some test of statistical significance, often in a form of a regression. As Ward, Greenhill and Bakke

(2010) aptly warns us though, covariates that are statistically significant are not necessarily predictive. While

Ward, Greenhill and Bakke (2010)’s caution was directed towards conflict forecasting, we find similar warnings in

economics (Welch and Goyal, 2008) and even genetics (Jakobsdottir et al., 2009; Gransbo et al., 2013).

Lo et al. (2015) explain that the main difference between what makes a covariate good for classification and

good for statistical significance depend on different properties of the underlying distributions – while the test of

significance is a test of the null hypothesis that the distributions of X under the two outcome states are the same,

prediction of a class involves testing whether X belongs in one state or another. Even if we were to avoid selecting

covariates based on statistical tests that point to theoretical importance, and were to find other means with which to

find support for theoretically relevant covariates, we may fall short in theorizing and finding all applicable factors.

When researchers don’t know the true pattern of interactions that generates an outcome, they risk selecting models

with only a subset of the relevant interactions when using statistical significance as a decision rule for inclusion.

If selection through theory can suffer from overpruning and/or misselection of variables, can machine learning

techniques offer a data-driven panacea then?

We are certainly not the first nor the only proponents of covariate screening as a way to dimension reduce. We

contribute to a rich computer science literature on covariate screening (also known as feature selection), whereby

a subset of an original group of variables is selected for later use in the construction of a model. Screening is

often relied upon when the data consists of a modest sample with many covariates, only a few of which may be

related to the outcome of interest. Most screening approaches focus on searching for the covariates that satisfy
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a specific performance measure, e.g. root mean squared error (RMSE). An approach that bears some similarity

to the previously mentioned approach of using theory-guided, statistically significant covariates, is to screen all

covariates for statistical significance and to conduct statistical models on significant covariates. As such, current

approaches do not return a direct assessment of covariates predictivity.

With some minor exceptions, there exist three broad categories of covariate screening in the literature. These

are filter, wrapper and embedded methods of screening. Filter methods tend to rely on specific statistics to rank

covariates (correlation coefficients, entropy, chi square etc.). Our proposed approach falls in the category of filter

methods, as we suggest the usage of an influence statistic to rank covariates (and sets of covariates) to select

appropriate covariates for the prediction modeling stage. Perhaps the most relevant comparison approach is sure

independence screening (SIS) developed by Fan and Lv (2008), which relies on pairwise correlations to rank

covariates. The technical conditions for SIS fail however, if a covariate is marginally unrelated but jointly related

to the response (Saldana and Feng, 2018). For instance, if rugged terrain must be jointly present with a large

young population for the right circumstances for rebellion to occur, SIS screening may have difficulties identifying

variables measuring the terrain and population as important. Our influence statistic differs from SIS in that the

influence statistic is nonparametric and can provide information on the predictivity of covariates for the outcome

directly. It is also designed to evaluate joint effects of covariates even when the covariates are marginally unrelated

to the response. We compare screening performance between the two filtering approaches in simulations in Section

4.

Wrapper methods select covariates based on the error rates of trained models with different subsets of covariates

on held out data; they tend to be computationally intensive and are by nature, model-dependent. A popular example

of a wrapper method is a stepwise regression. Stepwise (whether forward or backwards) regressions, while quite

intuitive may identify different sets of covariates depending on the initial choice of model. An additional problem

is that these approaches often have difficulties with correcting for (low) p-values (see Taylor and Tibshirani (2015),

Flom and Cassell (2009)).

Embedded methods learn which covariates best contribute to predictive accuracy of the model while estimating

the model. Regularization algorithms such as lasso, ridge regression and elastic net are popular examples of em-

bedded approaches. Other commonly used embedded methods include neural nets.4 If the number of covariates (or

interactions between covariates) grow to be much larger than the number of observations, some of these approaches

deteriorate in performance. Toy examples show that the lasso performance can deteriorate as the number of pre-

dictor variables increases; furthermore, while the lasso can model interactions (see Bien, Taylor and Tibshirani

(2013)) it is susceptible to lower prediction performance. This deterioration problem pervades other regularization

4Many social scientists embracing machine learning techniques for forecasting political phenomena have utilized popular embedded
methods (a burgeoning literature is evident especially in conflict (Beck, King and Zeng, 2000; Ward, Greenhill and Bakke, 2010; Muchlinski,
Siroky and Kocher, 2015))
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procedures as well (Flynn, Hurvich and Simonoff (2017)). In fact, many approaches are only selection consistent

if the number of observations is larger than the predictor dimension (Wang (2009)).

The proposed approach is meant to address some of these issues by suggesting the inclusion of a straightfor-

ward covariate screening step prior to the usual preferred modeling techniques with 1) no modeling assumptions,

2) screening for covariates with joint relationships to the response, and 3) screening based on a criterion directly

related to covariate predictivity. Furthermore, since the approach entails directly calculating statistics on (unma-

nipulated) covariates, the results from the covariate screening step are also highly interpretable, as the selected

covariates do not undergo any further transformations or weighting, as might be the case for more ‘black box’

approaches.5

3 Method

3.1 Defining predictivity, θc

To construct a statistic that estimates predictivity, we first present the concept of predictivity itself. We focus on

data where covariates are discrete or have been discretized and the outcome variable is binary. The following results

are generalizable to outcome variables that take on a finite number of possible values.

For instance, in forecasting conflict or state failure, the outcome is whether a country-year experiences a conflict

(Y = 1) or does not experience a conflict (Y = 0). In a traditional Bayesian binary classification setting we have

a prior over a country experiencing conflict π(Y = 1) and experiencing no conflict π(Y = 0) = 1 − π(Y = 1). We

can also define the joint distribution of a group of covariates X and Y as P(x, y) = π(y|x) · P(x) = P(x|y) · π(y),

where π(y|x) is the posterior distribution and π(y) is the prior. We proceed to simplify the setting for presentational

purposes, by assuming that priors over conflict and no-conflict are equally likely (π(Y = 1) = π(Y = 0) = 1
2 ) and

the cost of incorrect prediction is the same for both conflict and no-conflict. We then relax the assumption over the

priors. For generalization to different loss and cost functions, see Appendix Section #.

The best classification rule here can be derived using Bayes’ decision rule for minimizing the posterior proba-

bility of error: predict Y = 1 if π(Y = 1|x) > π(Y = 0|x), otherwise predict Y = 0. We consider here a set of discrete

covariates X = (X1, X2, ...Xm) each of which may take different levels. For example, if X = (X1, X2, X3) and each

covariate in the set has three levels, then we can say that X forms a partition, denoted by ΠX with 33 = 9 cells. We

may refer to particular cells in ΠX as j, where here j = 1, ..., 9.

The correct prediction rate θc on X using the full Bayes’ decision rule can be calculated as:6

θc(X) =
1
2

∑
j∈ΠX

max{Pr( j|Y = 1),Pr( j|Y = 0)} (1)

5A prominent example are neural networks (Tomandl and Schober, 2001); though see Olden and Jackson (2002) for developing specific
statistical tools to understand variable contributions to neural networks).

6The correct prediction rate can be written also as one minus the error rate, 1 − θe = θc.
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We can rewrite θc into the following:

θc(X) −
1
2

=
1
2

∑
j∈ΠX

max{Pr( j|Y = 1),Pr( j|Y = 0)} −
1
2

=
1
2

∑
j∈ΠX

(
max{Pr( j|Y = 1),Pr( j|Y = 0)} − 1

)
=

1
2

∑
j∈ΠX

(
max{Pr( j|Y = 1),Pr( j|Y = 0)} −

1
2
(
Pr( j|Y = 1) + Pr( j|Y = 0)

))

The last equation is equivalent to half the difference between the maximum and the mean of two probabilities,

which can be rewritten as half the absolute difference between the two probabilities:

θc(X) =
1
2

+
1
4

∑
j∈ΠX

|Pr( j|Y = 1) − Pr( j|Y = 0)| (2)

After having defined the predictivity of covariate set X, θc(X), we turn to forming statistics for estimating this

quantity of interest. It is easy to see in this theoretical setting that θc increases or remains the same value when

adjoining additional covariates to X and thereby expanding the resulting partition ΠX; a naı̈ve sample estimate

of θ̂c, also known as the training rate, is non-decreasing with the addition of any covariate – be it a covariate

with information or simply noise. Such an estimator would encourage the researcher to continually add covariates

until the partition space is maximized and each cell has at most one observation (see Appendix for an in depth

explanation of the phenomenon). Since the sample analog is not dependable in discerning between noise and

important covariates, and is therefore not a helpful screening statistic, we require a different statistic that can

differentiate between these types of covariates.

3.2 Influence statistic I

The influence statistic was originally introduced in Chernoff, Lo and Zheng (2009). It is defined as:

I(X) =

∑J
j=1 n2

j(Ȳ j − Ȳ)2∑n
i=1(Yi − Ȳ)2

(3)

where Ȳ j is average value of Y in cell j , n j are the number of observations in cell j. The collection of all cells,

each representing a different combination of levels for each covariate in X, comprises the partition of X, Π(X). The

curious reader may notice the statistic bears some resemblance to the Pearson chi-square statistic; an important

difference between the two statistics lies in the n2
j term outside the squared difference of local mean value of Y , Ȳ j,

and global mean value of Y , Ȳ . This places greater weight on cells with more observations. Intuitively, we might

expect that “emphasizing where the data is” might be helpful in a high dimensional setting of many cells and fewer

observations.
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Since the influence statistic is measured at the partition level, it essentially captures the influence of a set of

covariates. Attaining high influence statistic values does not require lower order or marginal relationships with the

outcome; this is a particularly attractive feature for which approaches such as the hierarchical lasso (Bien, Taylor

and Tibshirani (2013)) and random forests (Breiman, 2001) have greater difficulties achieving due to the reliance

on the existence of lower order signals in order to retrieve higher order interactions. Covariate sets with values

equal to or less than 1 are denoted as noise; for details and proofs related to this cut off, see Chernoff, Lo and Zheng

(2009).

3.3 Practical application

For ease of application, we provide a general workflow for the social scientist interested in incorporating screening

in his prediction research in Figure (1). The idea is to simply insert screening before application of the scientist’s

preferred prediction model to the data.

In Step 1, the data requires some preprocessing; in particular, the current implementation of our approach

requires discretization of continuous covariates. We recommend using a data-driven approach to discretization,

such as applying k-means clustering, with a small size for k, such as 2 or 3, as large k can lead to overly sparse

partitions. Our R package provides a function for such discretization. The researcher also makes a choice, based

on his expert opinion on the topic, of the order of interaction,m, that covariates can achieve in jointly affecting

the outcome. For instance, if the researcher believes that his application may involve three-way interactions of

covariates, then he selects m = 3. The selection of m helps directly define the total screening space to search for

important covariates.

In Step 2, we begin screening. If our computing resources permit, we conduct a full screening of all m-wise

interactions, as well as all lower orders, for covariates and calculate I statistics for all sets. However, if the full

number of covariate sets grow too large for a full search in a sensible amount of computing time, we suggest a

random search. Here, the researcher randomly draws m covariates many times from the full set of covariates. After

each draw (Steps 3 and 4):

1. Calculate I(m), then randomly drop one covariate in the m set at hand, resulting in m′ covariates.

2. Calculate I(m′) and compare I(m′) with I(m). If the former is larger, then the dropped covariate was noise

and we allow m′ to become our new m. If the latter is larger, then the dropped covariate was important when

combined with the remaining set and should be returned. Should we find that the latter is larger, and we

return the dropped covariate, we proceed with removing another random covariate from m.

3. Repeat until the covariate set cannot be reduced – no random drops of covariates results in larger I values

– and retain the resulting covariate set. We repeat this random draw many times and rank our resulting

covariate sets by I, removing any sets that have values less than 1.
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4. With the resulting covariate list, ranked by predictivity, we can proceed to Step 5 where we apply the preferred

prediction model to the reduced list of predictive covariates.

Preprocess data: Discretize continuous
covariates using k-means clustering, rule
of thumb k = 2 or k = 3. Researcher
makes decision based on substantive ex-
pertise on the highest number of inter-
actions of covariates for screening, m.

Step 1

Random draws and drops: if computing
resources permit, conduct full screening of
all m-wise interactions (and all lower order

interactions) for covariates and calculate I. Re-
turn highest I sets. Otherwise, randomly draw

m covariates from full set. Calculate I(Xm).

Step 2

Comparing I scores: Randomly drop 1
of m resulting in set m′. Calculate I(Xm′ ).
If I(Xm) > I(X′m), removed covariate in-
fluential. Return and randomly drop new
covariate from m; calculate new I(X′m). If

I(Xm) ≤ I(X′m), permanently remove dropped
covariate. Let m′→ new m. Continue un-
til set of covariates cannot be reduced – it
is highest I value set can achieve. Retain.

Step 3

Repeat Steps 2-3 many times: keep rank-
ings of returned covariate sets; covariate
sets with I values much larger than 1 are
not noisy. Discard covariates with I ≤ 1.

Step 4

Prediction model: proceed with pre-
ferred prediction model using co-
variates retained from Steps 1-4.

Step 5

Figure 1: Workflow for applied researcher.

3.4 Asymptotics

In this section, we provide details on some of the asymptotic properties of the I statistic. Theorem 1 demonstrates

that the I statistic approaches the L2 norm form of predictivity up to a constant, in probability. Theorem 2 provides

the asymptotic lower bound for predictivity using the I statistic, as well as the estimated lower bound. The I statistic
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can be shown to converge asymptotically to a constant multiple of:

θI(X) =
∑
j∈ΠX

[Pr( j|Y = 1) − Pr( j|Y = 0)]2 (4)

Equation (4) is a lower bound of the main term in Equation (2) (see Appendix Section # for related proof):

√
2

∑
j∈ΠX

[Pr( j|Y = 1) − Pr( j|Y = 0)]2 ≤
∑
j∈ΠX

|Pr( j|Y = 1) − Pr( j|Y = 0)| (5)

Thus while estimating the sample analog of the right hand side of Equation (2) leads to the naı̈ve training rate

estimator that indiscriminately increases with the addition of more covariates, a phenomenon akin to the behavior

of the R2 of a model with the addition of new covariates, searching for covariate sets with large measured influence

values can simultaneously lead to covariate sets with higher predictivity. We proceed with several assumptions, and

then present the asymptotic lower bound for the correct prediction rate:

Assumption 1: Sparsity We make the usual sparsity assumption whereby we expect that the true function f of

covariates that influence the outcome only depends on a small number of total covariates. Let Yi = f (Xi) + εi,

i = 1, ..., n where Xi = (Xi(1), ..., Xi(p) ∈ �p is a p-dimensional covariate, f : �p → � is an unknown function and

εi ∼ N(0, σ2). Suppose f satisfies such a sparseness condition, so that

f (x) = f (xR)

where xR = (xl : l ∈ R),R ⊂ 1, ..., p is a subset of the total p covariates of size r = |R| � p.

Assumption 2: Stable proportion We assume a stable proportion of each class outcome. That is, nY=1
n → λ,

λ ∈ (0, 1).

Assumption 3: Equal priors We assume the prior for Y = 1 is equal to the prior for Y = 0, π(Y = 0) = π(Y =

1) = 1
2 . We present results where we relax this assumption in the Appendix.

Assumption 4: 0/1 Loss We assign a cost (loss) of one to the failure of predicting the correct class. In some

situations, it may be appropriate to have differing prediction errors associated with each class outcome (for instance,

a false negative may merit a different loss to a false positive in a medical diagnosis for a patient). We present results

with different loss functions in the Appendix.

Theorem 1 Under Assumptions 1-4,

lim
n→∞

s2
nI(X)

n
p
→ λ2(1 − λ)2

∑
j∈ΠX

(Pr( j|Y = 1) − Pr( j|Y = 0))2 (6)
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where s2
n =

nY=1·nY=0
n .

Theorem 2 Under Assumptions 1-4, an asymptotic lower bound for the predictivity of X covariates is:

θc(X) ≥
1
2

+
1
4

√
2 lim

n→∞

I(X)
nλ(1 − λ)

(7)

Then the estimated lower bound for θc(X) is:

1
2

+
1
4

√
2I(X)

nλ(1 − λ)
(8)

We refer the interested reader to Appendix 7 for proofs of Theorems 1 and 2 and derived additional properties

of the influence statistic, such as the first and second moments.

We note that the true predictivity θc of a covariate set X is an absolute difference, an L1 norm, of the form:

constant ·
∑
j∈ΠX

|Pr( j|Y = 1) − Pr( j|Y = 0)|

And that the reason the influence statistic serves as a lower bound lies in how it asymptotically approaches the L2

norm version of θc:

constant ·
∑
j∈ΠX

(Pr( j|Y = 1) − Pr( j|Y = 0))2

Intuitively, we might notice that the closer we approach that L1 norm form the better we can approximate it. As

noted earlier however, the sample analog form for the L1 norm itself suffers from an inability to differentiate

between influential and noisy covariates. Should we attempt to design a statistic meant to estimate something of

the form L1 − p, 0 < p < 1 we would lack in convexity.

Suppose we were to design a statistic for Lp, p = 2 + α: Consider the case where p = 2 + α, α ∈ R>0. The Lp

norm in this case is convex. However, we know the following is true for any function f (x):

| f (x)|1 ≥ | f (x)|2 ≥ | f (x)|2+α

where 0 < α < ∞. That is, the more the p increases, the more convex (and further away from L1) the function

becomes. For this reason, we can eliminate p = 2 + α as an alternative that is better than using an L2 norm. This

leaves us with p = 1 + ε, ε ∈ (0, 1), which is a difficult space of norm for which to design statistics. As such, we

opt for the closest convex norm to Equation 1 for which we can design a statistic.
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4 Simulations

4.1 Distinguishing noise and influential covariates, finding interactions

To address some of the benefits and drawbacks of our proposed approach, we provide a variety of simulations that

lay out several important characteristics of the influence statistic. First, in order to demonstrate that the statistic can

differentiate between noise and influential covariates when assessing the joint predictivity of a group of covariates,

we show that after ranking all covariates and covariate sets by their I values, the ‘true’ sets of influential covariates

are still retrieved when the number of noise covariates increase, even when sample size remains modest in compar-

ison. Second, to demonstrate that the statistic can find jointly influential covariates even in the absence of marginal

relationships with the outcome variable, we present simulations with data generating processes with a) marginal

relationships between a few covariates and the outcome, and no joint effects, b) marginal and joint effects, and c)

only joint effects. A limitation which we discuss in Section 4 in the approach is the need to discretize continuous

covariates in order to calculate the influence statistic (though original continuous covariates are utilized during any

modeling stages). In simulations, we illustrate how discrete and continuous covariates are still able to be retrieved

when both are in discrete form.

We first demonstrate how the I statistic can distinguish noise covariates from influential ones, and thereby retain

a smaller subset of truly important covariates, with a series of simulations. As noted in Section 2, sure independence

screening (SIS) is a comparable alternative approach in the screening literature as it is also a well-known filtering

approach designed for high dimensional data.

The first set of simulations are conducted with data that have observations n ∈ {200, 400, 1600}. The total

number of covariates, both noise and influential, are k ∈ {10, 100, 200}, with either 3 or 4 “influential” covariates,

or covariates that contribute to the outcome in the data generating process. We consider two types of models, linear

and nonlinear, where nonlinear models include sin and cos functions. We conduct covariate screening with the I

statistic and report the proportion of retained influential covariates out of the actual influential covariates for each

scenario. As a baseline comparison, we also present covariate capture results for SIS. Full details of the simulations

are available in the Appendix.

Figure (2) illustrates our first set of simulation findings. Overall, I performs better than SIS for finding influen-

tial covariates. This holds when varying the number of observations, the number of total covariates to screen, and

whether the model is linear or nonlinear. Both approaches show marked improvements in capture rates of influen-

tial covariates as the number of observations n increases, while holding the total number of covariates k constant.

When the sample size is small, n = 200, compared to the number of total covariates to screen, screening with the I

statistic demonstrates the greatest advantage against SIS.
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Figure 2: Proportion of retained influential variables. Comparison of covariate screening using the I statistic
and using SIS. The y-axis reflects the proportion of influential covariates successfully discovered by the screening
method from the total true influential covariates. Number of observations n in the simulated data are noted by the
x-axis. Columns from left to right give the total number of covariates (influential and noisy) in the data, where
k = 10 on the left and k = 200 on the right most column. The first row of graphs are for data generated with
a linear model, while the second row of graphs are for data generated with a nonlinear model. Blue solid trend
lines represent screening via the I statistic; gray dotted trend lines representing screening via SIS. Each data point
represents results from 1000 data simulations.

The second set of simulations demonstrate the I statistic’s screening capabilities for covariate interactions, even

in the hard case when covariates that compose the interactions do not have marginal relationships with the outcome

but do have a joint relationship. We thus cannot rely on “piggybacking” off of marginal signals to discover joint

ones. Again, we vary n ∈ {200, 400, 1600}, k ∈ {10, 100, 200} and use a linear and a nonlinear model. We compare

covariate set capture for SIS with our preferred approach.

Results from our second set of simulations are presented in Figure (3). Again, screening with the I statistic

leads to better capture of influential covariate sets when compared with sure independent screening, across all

scenarios. Both approaches improve in proportion of covariate sets found as the sample size grows, though SIS

fares more poorly when the n/p ratio grows smaller. While the I statistic capture rates remain consistent across
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linear and nonlinear models, SIS performance under the linear model outstrips that under nonlinear model. Finally

we note that in screening for all marginal and two-way interactions between covariates (20,100 total covariate sets),

the right column of simulations represents examples of working with high dimensional data; even when the sample

size is small (n = 200) or modest (n = 400), the I statistic is still able to distinguish influential covariate sets.
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Figure 3: Retaining influential covariates with joint but no marginal effects on outcome: proportion of re-
tained influential variables. Comparison of covariate screening using the I statistic and using SIS. Y-axis is the
proportion of influential covariate sets successfully discovered by the screening method from the total true influen-
tial covariate sets. Covariate sets are jointly but not marginally related to outcome. Number of observations n are
denoted by the x-axis. Columns from left to right are total number of covariates (influential and noisy) in the data,
where k = 10 on the left and k = 200 on the right most column. The first row of graphs are for data generated with
a linear model, while the second row of graphs are for data generated with a nonlinear model. Blue solid trend
lines represent screening via the I statistic; gray dotted trend lines representing screening via SIS. Each data point
represents results from 1000 data simulations.
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4.2 Limitations with discretization

A clear limitation to the proposed approach is that the approach of analyzing partitions created by discrete covariates

requires either covariates to be discrete to begin with, or for the researcher to discretize the covariates prior to

evaluating covariate predictivity. In practice, we find that while discretization of continuous covariates via data-

driven approaches such as k-means clustering inherently results in some loss of fine grained information, obtaining

information on covariate set predictivity is still possible. To illustrate, we provide simulations using set of covariates

drawn from 1) normal and Bernoulli distributions, and 2) only normal distributions. We retain similar simulation

parameters with simulations 1 and 2 otherwise.

Results from this last set of simulations are presented in Figure (4). Again, applying the I statistic as a crite-

rion to select covariates tends to retain more of the truly important covariates than SIS. Both approaches perform

demonstrably better under a true linear model than a nonlinear one; however I-led covariate discovery can still

recover most of the influential covariates even in nonlinear settings, with improved performance as the sample size-

covariate size proportion grows. Most important to note however, is that even when continuous covariates (drawn

from a normal distribution) are discretized, our approach can still recover important covariates, faring especially

well when the underlying model is linear. Further work along the lines of creating I estimators adapted to con-

tinuous covariates are still of pressing importance, however. We discuss possible extensions of such work in the

Discussion Section.

We next turn to two high dimensional data applications, each of which has either explicit or implicit goals of

prediction.

5 U.S. Congressional text application

5.1 Data

Congressional speeches are a good example of big text data, full of important information that may be difficult

to extricate given the sheer number of phrases per speaker, and likely overabundance of procedural and otherwise

‘noise’ phrases. We consider an application by Gentzkow, Shapiro and Taddy (2016) that proposes measuring

partisanship in the U.S. Congress over the last century using Congressional speeches to demonstrate the possible

advantages of screening out the noise phrases and reducing the number of phrases to consider when measuring

partisanship. We compare incorporating a phrase screening step into the preprocessing steps Gentzkow, Shapiro

and Taddy (2016) (henceforth ‘GST’) take prior to estimating partisanship using with GST’s model. The full corpus

of data covers the speeches delivered by representatives on the floor of the 43rd to 114th United States Congress

(1873-2016), which includes both the House of Senate and House of Representatives, as recorded in the text of the

United States Congressional Record.

The main data Ct is structured in the following way; each row corresponds to a speaker, while columns repre-
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Figure 4: Proportion of retained influential variables with covariates drawn from normal and mix of normal
and Bernoulli distributions. Comparison of covariate screening using the I statistic and using SIS. Y-axis is
the proportion of influential covariate sets successfully discovered by the screening method from the total true
influential covariate sets. Number of observations n are denoted by the bottom x-axis. First three columns are
for simulated data with covariates drawn from a mix of normal and Bernoulli distributions. Last three columns
are for simulated data with covariates drawn from normal distributions. Total number of covariates (influential
and noisy) in the data are the values below distribution type. The first row of graphs are for data generated with
a linear model, while the second row of graphs are for data generated with a nonlinear model. Blue solid trend
lines represent screening via the I statistic; gray dotted trend lines representing screening via SIS. Each data point
represents results from 1000 data simulations.

sent distinct two-word phrases or bigrams so that each element ci jt corresponds to the number of times speaker i has

spoken the phrase j in session t. To attain the data from the full scripts of speeches we follow GST’s preprocessing

steps up to the point of the authors dropping phrases that “are likely to be procedural or have low semantic mean-

ing”. From there we conduct removal of phrases in two ways. See Figure (5) for steps taken to replicate GST’s

approach as well as introducing covariate screening in lieu of GST’s phrase-removal rules. In pink are the steps

taken to replicate GST’s approach of removal via the series of rules and cut offs in their Online Appendix. In blue

is our data-driven approach to screen phrases (only Step 2 differ between the two approaches). After phrases are

reduced to a manageable size, we apply a multinomial inverse regression with a penalization as proposed by GST

to estimate partisanship in each session.
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Preprocess data for each ses-

sion: remove punctuation,

stop-words, #s, symbols etc.

Step 1

Preprocess data for each ses-

sion: remove punctuation,

stop-words, #s, symbols etc.

Subjective rules: remove

noise/nonpartisan phrases using

series of rules selected by GST

Step 2

Covariate screening: remove

noise/nonpartisan phrases by cal-

culating influence of all covariates

and interactions, then rank by I.

Estimate parameters: Ap-

ply MIR model to remaining

phrases; calculate partisanship

Step 3

Estimate parameters: Ap-

ply MIR model to remaining

phrases; calculate partisanship

Figure 5: Workflow for processing and conducting covariate screening of U.S. Congressional Records data.
In pink are the steps taken to follow GST’s approach as closely as possible. In blue are steps taken to incorporate
covariate screening in order to remove noise phrases and non partisan phrases.

5.2 Discussion of selected phrases

After Step 1, we use our covariate screening approach to remove noise phrases and rank phrases for influence in

Step 2.

Before moving to Step 3 in Figure (5), however, we review some of the phrases that survive the covariate

screening and conduct a qualitative sanity check of sorts – does covariate screening return phrases that are reflective

of the types of debated topics throughout the different Congressional sessions? To do so, we review some of the

top phrases returned in a few sessions throughout our dataset (see Table (1)).

We inspect the phrases returned from screening from the 43rd session (1873-1875), a session which convened

during the postwar era of Reconstruction. The divide between Republicans and Democrats had been widening

over the topic of federal authority; Republicans supported an expansion of federal power (‘feder author’, ‘power

state’, ‘state feder’, ‘right power’) to provide civil rights for African Americans in the Civil Rights Act of 1866

(see phrases such as ‘oppress peopl’), the Fourteenth Amendment and the formation of the Department of Justice,

while Democrats opposed these proposals. With the passage of the Civil Rights Act and the 14th Amendment,

Republican lawmakers claimed the sovereignty of the national government (‘sovereign state’), particularly with

respect to determining the status of and defending the rights of Americans regardless of race (Kaczorowski, 1987).

By the 80th Congressional session (1947-1949), the U.S. was emerging from the aftermath of World War II.

During this time, what became known as the Truman doctrine began to take form, a series of political measures

taken to counter Soviet geopolitical expansion in the Cold War. These measures included ending racial segregation
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Sessions
43 50 60 70

1873-1875 1887-1889 1907-1909 1927-1929
1 power state system taxat reserv balanc repres great
2 oppress peopl great question repres people presid veto
3 feder author free trade campaign fund everi dollar
4 state feder import industri sovereign state cotton crop
5 sovereign state countri time common sens class peopl
6 wish state industri unit cotton crop respect state
7 entitl receiv tax collect privat citizen interest farmer
8 expenditur money duti sugar equal right fair just
9 govern pay remov duti white peopl right govern
10 right power mill bill state legislatur state power

Sessions
80 90 100 114

1947-1949 1967-1969 1987-1989 2015-2017
1 back hous present administr good intent violenc never
2 great man commend presid support substitut commonsens gun
3 forc unit fiscal crisi tax increas invest infrastructur
4 live standard administr fail dollar go lgbt communiti
5 blank check public life fiscal respons gun violenc
6 govern right public servic tax incent expand background
7 foreign aid civil liberti job creat trillion debt
8 militari naval financi assist freedom nicaragua access health
9 cut fund social justic moral respons victim gun
10 system free fix incom invest children immigr reform

Table 1: Top influential phrases from every 10th session (114th session as last)

18



in the armed forces and providing foreign aid for Greece and Turkey to prevent the two countries from falling to

the hands of communism during the Greek Civil War (captured by phrases such as “foreign aid”, “militari naval”).

At the convening of the 114th session (2015-2017), Congress was debating gun control with renewed interest

– after the armed attack on a historic black church in Charleston, South Carolina on June 17, 2015, followed by

shootings in Tennessee, Oregon, Colorado, California, and Florida among others. Sharp partisan differences exist

still over several issues: waiting periods for those who wish to purchase guns legally (Democrats largely opposed

proposals intending to shorten the periods while Republicans are divided), the degree to which legally obtained

guns contribute to gun violence (Democrats are much more likely than their Republican counterparts to support

the view that legal guns contribute a great deal to gun violence), and whether imposing more difficult for people

to legally acquire guns would ameliorate the likelihood of mass shootings in the future (a majority of Democrats

believe this such hurdles would diminish the likelihood, while Republicans are more skeptical) (Oliphant, 2017).

The preoccupation of debate with gun violence and gun control can be evidenced by the selection of phrases

“violenc never”, “commensens gun”, “gun violenc”, “expand background”, and “victim gun”.

5.3 Multinomial inverse regression Model

Gentzkow et al. (2018) build on methods developed by Taddy (2013, 2015) and propose a structural choice model

and impose an L1 penalty via a lasso in a multinomial inverse regression (approximated with the likelihood of a

Poisson model) to the data and find that partisanship has grown slightly over the years.

We briefly review the model proposed by the authors (for further details, see Section 3, Gentzkow et al. (2018))

as well as their approach to estimating the parameters of interest and conducting inference.

Let Rt = i : P(i) = R,mit > 0, Dt = i : P(i) = D,mit > 0 denote the sets of Republicans and Democrats,

respectively, for each session t. xit is K-vector of speaker characteristics: state, chamber, gender census region, and

whether the political party is in majority in session t.

Assume:

cit ∼ MN
(
mit,qP(i)

t (xit)
)

where qP
t (xit) ∈ (0, 1)J for all P, i, and t. mit is the verbosity of individual i in time t and the probability of speaking

each phrase is qP
t (·), the combination of which characterize the speech-generatign process. Each speaker speaks to

maximize the utility payoff associated with speaking their phrases in each session, uit, which in turn enters into the

probabilities of speaking each phrase.

qP(i)
jt (xit) = eui jt/

∑
l

euilt

ui jt = α jt + x′itγ jt + ϕ jt1i∈Rt
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where ϕt is J-vector mapping speech to public opinion, αt J-vector for baseline popularity of phrase at time t, γ j

K × J matrix mapping speaker characteristics into utility of using each phrase.

Finally, define partisanship of speech at x:

πt(x) =
1
2

qR
t (x) · ρt(x) +

1
2

qD
t (x) · (1 − ρt(x))

ρ jt(x) =
qR

t (x)
qR

t (x) + qD
t (x)

Then, the average partisanship in session t (and our main statistic of interest) can be denoted as:

π̄t =
1

|Rt ∪ Dt|

∑
i∈Rt∪Dt

πt(xit)

where ρ jt(x) is posterior belief that an observer with a neutral prior assigns to a speaker being Republican if

speaker chooses phrase j in session t and has characteristics x. Partisanship (πt(x)) averages the posterior over the

possible phrases and parties. Average partisanship (π̄) averages partisanship over characteristics of speakers active

in same session. Estimate parameters of interest {αt, γt, ϕt}
T
t=1 by minimizing the following penalized objective

function:

∑
j

{∑
t

∑
i

[
mitexp(α jt + x′itγ jt + ϕ jt1i∈Rt ) − ci jt(α jt + x′itγ jt + ϕ jt1i∈Rt ) + ψ

(
|α jt + ||γ) jt||1 + λ j|ϕ jt|

)]}
(9)

The parameters are estimated via a multinomial inverse regression (MIR) with the appropriate penalization incor-

porated for the party-phrase coefficients. Inference is done via subsampling (Politis et al. 1999).

5.4 Results

The estimated average partisanship of speech is presented in Figure (6). The x-axis depicts the time period from the

43rd session to the latest 114th session. The y-axis reflects the average estimated partisanship. A baseline random

series is plotted in grey, whereby party labels are randomized for the data from each session before estimating

partisanship. The magenta line reflects the estimation process presented by Gentzkow et al., which does not utilize

our proposed screening step (and is thus referred to as ‘w/o screening’ in the Figure). The blue trend line represents

the same estimation process as the magenta line, with our screening approach incoroprated. Overall, there is an

increase in partisanship over time. Estimating partisanship with screening incorporated to remove noisy phrases

however, leads us to find a much higher level of partisanship throughout history, though with a similar upwards

surge of partisanship in recent sessions. Taking polarization as a proxy to partisanship, research has shown that rises

in polarization in more recent years is not an exceptional phenomenon. Rather, as Han and Brady (2007) puts it,

it is “a delayed return to historical norms”. Should we approach estimating partisanship through the interpretation
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of the degree of accuracy with which we can predict a speaker’s party label, then a model that predicts well is of

paramount importance. As such, our proposed screening step can be considered highly necessary as illustrated in

the patterns of higher partisanship detected.
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Figure 6: Average partisanship of speech (π̄t) for each session . The magenta trend line depicts the approach taken
by Gentzkow et al. using subjective rules to remove nonpartisan phrases before estimation and inference using MIR
with penalization for average partisanship. The blue trend line depicts the estimated average partisanship for each
session using the exact same approach as the magenta line, except the removal of nonpartisan phrases is conducted
by data-driven phrase-screening. The grey dotted line represents estimation of the model in the same fashion as the
magenta line, except for each session, all party labels are reassigned at random. Thus, the grey dotted trend serves
as a baseline comparison after accounting for similar x characteristics aside from party label, as well as overal
amounts of speech produced in each session.

6 Forecasting state failure

Being able to forecast peace and conflict is a major motivation for peace research: early warning systems can

make it possible to prepare for and intervene against conflicts. We focus our next application on forecasting state

failure using data from King and Zeng (2001) drawn from the Political Instability Task Force (PITF). PITF is a
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U.S. government financed research group tasked with the goal of predicting political instability for countries across

the world in advance and the data it collects has been widely studied in the peace and conflict literature (Goldstone

et al., 2010, 2000). There are a total of 8580 country-years (1955-1998) with a total of 1231 covariates. We split the

data into training and testing – training data span from 1955-1995 (n = 7995), while testing data span 1996-1998

(n = 585); thus we are attempting to forecast the state failure outcomes of countries three years into the future.

We compare against three theory-guided approaches to selecting covariates – King and Zeng (2001), Goldstone

et al. (2010) and Bates (2008). King & Zeng use the same dataset used here to forecast political instability with

neural networks. While neural networks are a popular tool in the machine learning tool kit, in King & Zeng’s usage

they are not used for the purpose of covariate selection; rather, the authors select their covariates guided by the

literature on state failure, and rely on neural networks to model possible nonlinearities in the selected covariates

flexibly. Goldstone et al. (2010) and Bates (2008)rely on logistic regressions for their forecasting efforts, and differ

in their approaches to selecting covariates.

We also compare against common data-guided, machine learning approaches that have gained popularity in

the conflict forecasting literature: neural networks, random forests, and lasso. For each model, we add a covariate

screening step. Figure (7) presents the workflow associated with this application. First, we split the data into

training and testing sets. This step is designed safeguard our screening and fitted models from overfitting; all of

our reported prediction outcomes (here area under the receiver operating curve (AUC) values) are from held-out

testing data from future years. Given the preponderance of missing values across observations and covariates

and the low-likelihood that the missing values are missing at random, we proceed with treating missingness as

information itself. To do this, we create binary indicators for covariates that indicate whether there is missingness

in the covariate. In Step 3, we discretize continuous covariates. Given the highly interactive nature of conflict and

instability data, we search up to 5-way interactions of covariates.7

In Steps 4 and 5, we rank covariate sets by highest I values and discard any sets with I < 1 as noise covariates.

Using the (non-discretized) original forms of each covariate, we input high I scoring sets into the models of choice

and fit our model on the training data. In Step 6 we evaluate our model’s forecasts with testing data.

The next section presents results from our state failure forecasting exercise.

7Selection of covariates with up to 4-way and up to 3-way covariate interactions as the search space return similar highest ranked variable
sets.
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Split data training & testingStep 1

Preprocess NAs: let NAs become

their own category as indicator

variables → 5, 917 total covariates

Step 2Step 2

Discretize covariates, decide on p = 5:

search up to 5-way interactions (sets 5

covariates jointly influencing outcome)

Step 3

Calculate I: rank covariates and

discard covariates with I ≤ 1.
Step 4

Fit model: use (original) co-

variates with highest I values in

chosen model, on training data;

Step 5

Test model with testing data.Step 6

Figure 7: Workflow for processing and conducting covariate screening of PITF data

6.1 Results

We present first the covariates chosen for each theory-guided model and the results of covariates passing the screen-

ing stage using the I statistic in Table (2), represented as Steps 3 and 4 in Figure (7). Covariates are ranked by

magnitude from highest to lowest. For approaches that use a prediction model based on the logistic regression

(Bates, Goldstone et al.) these are absolute magnitudes of logistic coefficients. For neural nets (King & Zeng), this

is a measure of variable relative importance based on the model weights as proposed by Garson (1991) and Goh

(1995). Covariate sets selected by our screening approach are ranked by influence score.

From Table (2) it is evident that there is some overlap in types of covariates found to be important using

screening and guided by state failure theory. For instance, discrimination is identified by Goldstone et al. (2010) and

also identified as a highly important, predictive covariate by I statistic value. Likewise, whether a country neighbor
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is experiencing conflict – thereby making a state more vulnerable to spillover effects among other destabilizing

forces – is identified as being of key importance by Goldstone et al. (2010) as well as by I score. However, it is

interesting to note that not only is a neighbor’s experience important, so must that experience interact with a state’s

own history of instability. Given that this is a forecasting exercise, we must remain vigilant in our interpretation of

how these covariates interact – we do not know, for instance, whether the causal arrow points from the one’s own

historical state instability to a neighbor’s and then rebounding back, or whether perhaps a third force has affected

both states at different time periods and then resulted in regional contagion.

We also find an interaction between problem country (as defined by members of the State Failure Task Force8)

and whether there exists a large, politically significant group within the borders of the state. Indeed, many of the

selected covariates relate to the existence of groups with cleavages along political, ethnic or linguistic dimensions.

This shouldn’t be overly surprising to scholars of political instability; following the work of Horowitz (1985)

we expect that increased fractionalization of ethnic groups (large numbers of ethnic groups that each makes up a

relatively small proportion of the overall population), especially more politically salient ones, can lead to a more

politically contentious and unstable state. Noteable mechanisms through which ethnic diversity can lead to greater

instability are diverse in the literature; these range from impediments to economic development (Easterly and

Levine, 1997) to retaliation from exclusion from state power (Cederman and Weidmann, 2017).

Unsurprisingly, the predictive ability of the historical trajectory of instability for a country is substantial. What

is perhaps surprising and an important discovery from the covariate screening stage is that this trajectory interacts

with other influential factors, such as the history of conflict in a neighboring state.

With these covariates in hand, we turn to the prediction models, trained on our training data, and then tested for

prediction error on our testing data (Step 5 in Figure (7)).

We compare the area under the receiver operating curve (AUC) for each of the models with covariates selected

with guidance from theories of state failure, as well as our approach of data-driven screening, combined with a

simple logistic regression (see Table (3)). The AUC is a commonly applied performance measure to prediction

exercises (see Bradley (1997) for an explanation of some of its desirable properties), and is widely applied in

forecasting in peace and conflict research (Hegre et al., 2017).

We note that of what we term the ‘theoretically-driven’ approaches, Bates’ logistic regression has the largest

AUC value (0.7493), when compared to Goldstone et al.’s logistic regression and King & Zeng’s neural network.

However this is still a smaller AUC value than that achieved by covariate-screening with the I statistic, followed by

a logistic regression (0.929). Our approach is particularly comparable to Bates’ and Goldstone et al.’s as the same

model is applied to all three approaches. We explore a variety of machine learning models next.

8See Sources section of variable definition files associated with PITF data: https://dataverse.harvard.edu/dataset.xhtml?
persistentId=hdl:1902.1/RPQIODIANR.
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Covariate (set) Bates Goldstone et al.
1 Competitiveness of political participation Economic or political discrimination
2 Legislative coalitions Regime
3 Energy exports Conflict neighbor
4 GDP Infant mortality rate
Covariate (set) King & Zeng I
1 Legislative effectiveness Ethnic group
2 Democracy Linguistic group
3 Infant mortality rate Politically significant group
4 Trade openness Economic discrimination

5 Population density
Problem country
*politically significant group

6 Autocracy Religious group
7 Military population Lag 1 yr state failure
8 Lag 2 yr state failure
9 Lag 2 yr state failure*conflict neighbor
10 Change in political discrimination
11 Conflict neighbor

Table 2: Selected covariates across theory-driven approaches and covariate-screening with I statistic: impor-
tance of covariates are ranked in order of magnitude.

Theoretically-driven approaches AUC

Bates (Logistic) 0.7493

Goldstone et al. (Logistic) 0.5909

King & Zeng (Neural nets) 0.6596

I + Logistic 0.929

Table 3: AUC comparisons, theory

To determine whether screening can help the applied researcher interested in forecasting state instability, we

compare direct estimation of three different machine learning approaches, neural networks, random forests and

lasso, with and without an I-guided screening step immediately prior to estimating the model.AUC results are

presented in Table (4).

Since we are exploring the space of interactions up to 5-way interactions (see Figure (7), Step 3), this results in

over 2.3×1013 covariate sets to screen. While the I statistic can comfortably screen these9 down to 11 covariate sets,

this is computationally prohibitive for direct application to the ML techniques at hand. As such, we only explore up

to 2-way interactions for the non-screening neural network, random forests and lasso; the last approach still suffers

9We conduct screening of all marginal and 2-way interactions. Above 2-way interactions we utilize the random draw and drop approach
presented in Figure (1).
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from over-parameterization and cannot produce a tuned model without even further dimension reduction. As such

for “lasso (alone)” we do not have AUC results to provide. We find that covariate screening with the I statistic

can range from marginally improving (in the case of random forests) to drastically increasing (in the case of neural

networks and lasso) AUC values compared to direct application of the ML approach.

ML-driven approaches AUC

Neural networks (alone) 0.5996

+ I 0.928

Random forests (alone) 0.9293

+ I 0.9294

Lasso (alone) N/A

+ I 0.9513

Table 4: AUC comparisons, machine learning approaches

7 Discussion

In this article we demonstrate the importance of covariate selection for dimension reduction in high dimensional

data and introduce a screening approach that takes into account the goal of prediction directly through a screen-

ing statistic that has a direct relationship with covariate predictivity. This is especially important now that high

dimensional data is more prevalent in the social sciences; nearly all of text data is inherently high dimensional and

availability of online and technological resources make data more likely to grow than shrink in the years to come. A

key question for applied researchers interested in using this data to predict or forecast some political phenomenon

of interest is how to select the important covariates, and remove noisy ones, to focus attention on the factors that

are likely to do the most work in our prediction models and to make our data more manageable for off-the-shelf

approaches, machine-learning or otherwise.

We discuss how theory-guided approaches to selecting covariates risk missing important covariates that are

(as yet) untheorized, and can select covariates based on a different criterion (statistical significance) and arrive at

different covariates than we would have under the criterion of predictivity. We further elaborate on how off-the-shelf

machine learning approaches can still face computational challenges as the data grows in covariates faster than in

observations. Dimension reduction or regularization are common approaches adopted for this precise problem. Our

proposed approach can be classified as a filter-based one, and differs from other filter techniques in that the statistic

with which we evaluate covariates and sets of covariates is shown to have a direct relationship to predictivity itself.

In asymptotics, it is a lower bound to the correct prediction rate. We argue that this makes our approach more likely
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to capture covariates important for prediction and demonstrate in a series of simulations how the influence statistic

performs in various sample-constrained settings. We find that the influence statistic captures important covariates

quite well, and that this performance is reasonably stable throughout different types of data distributions, sample-

to-variable ratios, and models. When compared against sure independence screening, a filtering approach that also

screens covariates, albeit through correlation-based magnitudes, the I screening approach always performs better.

One of the drawbacks to the proposed approach is that it requires discretization of covariates that are continu-

ous, leading to some loss of information. Further research on extending the influence statistic to continuous settings

is required and outside the scope of this current article. A promising direction would be to approach redefining the

statistic through k-nearest neighbors constructions. To explore how “roughening” continuous covariates into dis-

crete ones may affect capture rates of the correct predictive variables, we conduct a series of simulation experiments

whereby covariates are drawn from continuous distributions as well as both continuous and discrete distributions

and then discretized appropriately, prior to screening. We find that the I statistic is still able to achieve high rates of

correct capture, especially when the underlying model is linear. It is also still able to outperform SIS, despite the

latter approach not requiring discretization.

We explore whether and how screening can improve prediction in two applications; the first delves into the

measurement of partisanship in the U.S. Congress from 1873-2017. We find that our phrase-screening results in

qualitatively reasonable returned phrases, indicative of some of the most inter party dividing debates throughout

history. We also find that partisanship has grown throughout the years, though not as dramatically as Gentzkow,

Shapiro and Taddy (2016) find. Part of the reason is because we estimate higher measured values of partisanship

in earlier sessions of Congress, thus making the rise in partisanship levels less steep. We argue that this is due to

the more data-driven removal of noise phrases resulting in a smaller subset of relevant phrases to input into model

estimation stage.

Our second exploration looks into a classic case of forecasting political instability – can screening for predictive

covariates (and interactions of covariates) improve our out-of-sample correct prediction rates? Can we discover new

and interesting (possibly nonlinear) interactions of covariates? Our screening returns covariate sets that contribute

to better predictions. The types of covariate sets returned also suggest that the conflict histories of neighboring

states may be important, as well within-country cleavages that result in large groups of people aligned on ethnic,

religious or political dimensions. Furthermore, these factors may interact with one another and need to be accounted

for in forecasting models. We find that screening can help but not harm prediction rates as measured by AUC.

Taken together, we suggest there are gains to be made in the area of high dimensional prediction with the

simple incorporation of a covariate screening step. It is important that such a screening process utilize criteria that

are adapted specifically to the goal of prediction, however. As such, we propose the influence statistic as a fitting

candidate, based on its theoretical relationship to predictivity itself, and its ability to screen between noise and
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influential covariates in sample-constrained settings. We imagine that other data contexts with naturally interactive

covariates and possibly limited sample sizes may find similar applicability of such a screening approach. For

instance, a popular experimental design, the conjoint experiment, inherently considers the effects of profiles of

varying attributes, often randomized by the researcher, on some respondent outcome. While the experiment may

be aptly powered to test whether specific attributes are likely to affect respondent outcomes, we easily envision

difficulties of powering tests for combinations of attributes; a full exploration, without some prior knowledge of

likely candidate combinations, would be prohibitively costly. As such, a screening of such combinations during a

pilot would provide an extremely straight-forward capture of such a prior.
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Appendix

Naı̈ve estimator for θc(X)

We illustrate the sample analog’s (naı̈ve estimator) tendency to prefer adding any and all covariates to a set of

covariates by always increasing with the addition of covariates.

Suppose Xm = {X1, ..., Xm} and Xm+1 = {X1, ..., Xm, Xm+1}. The partition formed by Xm is

ΠXm = {A1, ..., Am1},

while the partition formed by Xm+1 is

ΠXm+1 = {A1 ∩ B, ..., Am1 ∩ B, A1 ∩ Bc, ..., Am1 ∩ Bc}

= {ΠXm ∩ B,ΠXm ∩ Bc}

where B = {Xm+1 = 1}. Let

Π1
Xm

= ΠXm ∩ {Xm+1 = 1}

and Π0
Xm

= ΠXm ∩ {Xm+1 = 0},

where Π1
Xm

and Π0
Xm

form two subpartitions of ΠXm+1 , i.e. , ΠXm+1 = Π0
Xm
∪ Π1

Xm
. Then

|p̂ΠXm
(d) − p̂ΠXm

(u)| ≤ | p̂Π0
Xm

(d) − p̂Π0
Xm

(u)|

+|p̂Π1
Xm

(d) − p̂Π1
Xm

(u)|,

where p̂(·) is the sample estimator. We see that the sample analog, much like the R2 statistic, inherently favors an

increase in number of partition cells, i.e. adding more variables.

Properties of I

Proof Theorem 1

Theorem 1 follows directly from Lo et al. (2016). The proof requires showing that the I statistic asymptotically

approaches a constant multiple of θI .

IΠX can be expressed as a weighted average of chi-squares under the null hypothesis of no association between
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X = Xk, k = 1, ...,m and Y . That is, IΠX can be expressed as
∑J

j=1 λ jχ
2
j , where λ j ∈ (0, 1) and

∑J
j=1 λ j = 1−

∑J
j=1 p2

j

where p j is the probability of cell j.

For notational simplicity, let nY=1 be n1 and nY=0 be n0. Thus n = n1 + n0. We can then express ns2
nIΠX as:

ns2
nIΠX =

∑
j∈ΠX

n2
j(Ȳ j − Ȳ)2

=
∑
j∈ΠX

(
n0, j + n1, j

)2
·

( n1, j

n0, j + n1, j
−

n1

n0 + n1

)2

=

( n0n1

n0 + n1

)2
·
∑
j∈ΠX

(n1, j

n1
−

n1, j

n1

)2

where n1, j and n0, j denote the number of observations where Y = 1 and number of observations where Y = 0 in

cell j. We can decompose ns2
nIΠX into:

ns2
nIΠX =

∑
j∈ΠX

n2
j(Ȳ) j − Ȳ)2 = An + Bn + Cn

where:

An =
∑
j∈ΠX

n2
j(Ȳ j − µ j)2

Bn =
∑
j∈ΠX

n2
j(Ȳ − µ j)2

Cn =
∑
j∈ΠX

−2n2
j(Ȳ j − µ j)(Ȳ − µ j)

E(Ȳ j) = µ j and E(Ȳ) = µ =
n1

n0+n1
for fixed n. An and Cn converge in probability to 0 as n → ∞ when divided by

the term n2. What remains is simply Bn. Note:

lim
n

Bn

n2 =prob lim
n

∑
j∈ΠX

(n2
j

n2

)
(µ j − µ)2

Since our outcome is binary, we have:

µ j =
n1P( j|Y = 1)

n0P( j|Y = 0) + n1P( j|Y = 1)

µ =
n1

n0 + n1
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And for every j, n j
n converges in probability to p j = λP( j|Y = 1) + (1 − λ)P( j|Y = 0) as n→ ∞, if limn =

n1
n = λ, a

fixed constant between 0 and 1, it follows that

Bn

n2 =
∑
j∈ΠX

(n2
j

n2

)
(µ j − µ)2

→prob

∑
j∈ΠX

p2
j

(
λP( j|Y = 1)

λP( j|Y = 1) + (1 − λ)P( j|Y = 0)
− λ

)2
as n→ ∞

=
∑
j∈ΠX

[
λP( j|Y = 1) − λ[P( j|Y = 1) + (1 − λ)P( j|Y = 0)]

]2

=
∑
j∈ΠX

[
λ(1 − λ)P( j|Y = 1) − [λ(1 − λ)P( j|Y = 0)]

]2

= λ2(1 − λ)2
∑
j∈ΠX

[
P( j|Y = 1) − P( j|Y = 0)

]2

where the last equation is a constant multiple of
∑

j∈ΠX

[
P( j|Y = 1) − P( j|Y = 0)

]2.

Proof Theorem 2

Theorem 2 follows directly from Lo et al. (2016). Under Assumptions 1-4, we can produce an asymptotic lower

bound for the correct prediction rate of covariate setX:

Starting from Equation (7),

θc(X) =
1
2

+
1
4

∑
j∈ΠX

|P( j|Y = 1) − P( j|Y = 0)|

≤
1
2

+
1
4

√
2

∑
j∈ΠX

(
P( j|Y = 1) − P( j|Y = 0)

)2

=
1
2

+
1
4

√
2θI(ΠX)

=prob
1
2

+
1
4

√
2 lim

n→∞

s2
nIΠX

nλ2(1 − λ)2

=prob
1
2

+
1
4

√
2 lim

n→∞

IΠX

nλ(1 − λ)

To arrive at line 2 from line 1, we use the fact the following (see Lemma 1 from Lo et al. 2016 for proof):

For K real values {z j; 1 ≤ i ≤ K},
∑K

j=1 z j = a and
∑K

j=1 |z j| = b we have:
∑K

j=1 z2
j ≤

a2+b2

2 .

To arrive at line 4 from line 3, we use Theorem 1.

Generalization to arbitrary priors

In the main text, we proceed with equal priors for Y = 1 and Y = 0; this may be an inappropriate choice for many

social science applications, especially ones that feature rare events, such as state failure. Furthermore, we may not
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always be able to acquire prior information or estimate it with empirical data. As such, we present extensions of

the correct prediction rate θc and the modified I statistic under arbitrary priors (see Lo et al. (2016) for original

presentation):

Assuming an arbitrary prior π(Y = 1) and n1
n → λ as n → ∞, the correct prediction rate for covariate set X

θc(X) is:

θc(X) =
1
2

+
1
2

∑
j∈ΠX

|P( j|Y = 1)π(Y = 1) − P( j|Y = 0)π(Y = 0)|

Let the modified score I∗
Πn

be defined as

ns2
nI∗Πn

=
1
4

∑
j∈ΠX

n2
j

[
ȳ j(

π(Y = 1)
λ

) − (1 − ȳ j)(
π(Y = 0)

1 − λ
)
]2
.

Then we have:

lim
n→∞

s2
nI∗

Πn

n
=p

1
4

∑
j∈ΠX

[
P( j|Y = 1)π(Y = 1) − P( j|Y = 0)π(Y = 0)

]2. (10)

Similar lower bounds can then be derived as:

θ∗c(X) =
1
2

+
1
2

∑
j∈ΠX

∣∣∣P( j|Y = 1)π(Y = 1) − P( j|Y = 0)π(Y = 0)
∣∣∣ (11)

≥
1
2

+
1
2

√
lim
n→∞

λ(1 − λ)I∗
Πn

2n
− a2 (12)

where a =
∑

j∈ΠX(P( j|Y = 1)π(Y = 1) − P( j|Y = 0)π(Y = 0)) = π(Y = 1) − π(Y = 0).

Similar to the situation under equal priors, Equation (11) is a direct consequence of Equation (10).

Generalization to different loss and cost functions

We have utilized a zero-one loss thus far, treating false negatives and false positives equally. In applying to specific

applications, the researcher may find other loss functions more fitting; for instance, incorrectly predicting one

country facing state failure may be deemed less serious a mistake than mistakenly allaying the fears of another in

avoiding political disorder. As such, we generalize the correct prediction rate θc and the I statistic to different loss

functions.

We define the loss function L as:

L(Y = 1,Y = 0) = lY=1, L(Y = 0,Y = 1) = lY=0 (13)

and

L(Y = 1,Y = 1) = L(Y = 0,Y = 0) = 0 (14)
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where lY=1 and lY=0 are the losses incurred for misclassifying a Y = 1 observation as a Y = 0 and vice versa.

The optimum Bayes’ solution is found by minimizing the expected predicted loss, given its j value. We simply

assign a test sample with partition (predictor) j to Y = 1 if:

P( j|Y = 1)π(Y = 1)L(Y = 1,Y = 0) < P( j|Y = 0)π(Y = 0)L(Y = 0,Y = 1)

otherwise, assign to Y = 0. Equivalently, choose Y = 1 if

P( j|Y = 1)π(Y = 1)lY=1 < P( j|Y = 0)π(Y = 0)lY=0

otherwise Y = 0. The expected loss of adopting this rule is:

el =
1
2

∑
j∈ΠX

min{a j, b j},

where a j = P( j|Y = 1)π(Y = 1)lY=1 and b j = P( j|Y = 0)π(Y = 0)lY=0. The random rule of classifying an

observation to Y = 0 or Y = 1 has the expected loss:

γ =
1
2

∑
(a j + b j) =

1
2

(π(Y = 1)lY=1 + π(Y = 0)lY=0) ,

a constant independent of the partition Πx. The “gain” in θl
c (interpreted as less the expected loss of Bayes’ rule)

can be defined as:

θl
c(X) =

1
2

∑
j∈ΠX

max{a j, b j} =
1
2

∑
j∈ΠX

(a j + b j) − el = γ − el.

Since γ is independent of X and ΠX, it is desirable to search for X with larger θl
c to achieve better “gains”. Again

we have

θl
c(X) =

γ

2
+
θl

c − el

2

=
γ

2
+

1
4

∑
j∈ΠX

∣∣∣a j − b j
∣∣∣

After standardizing by γ, we obtain the improved prediction rate as:

θc(X) =
θl

c

γ

=
1
2

+
1

4γ

∑
j∈ΠX

∣∣∣a j − b j
∣∣∣
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Collecting the above discussion together, let the cost-based I-score Ic
ΠX

be defined as:

ns2
nIc

ΠX
=

1
4γ

∑
j∈ΠX

n2
j

[
ȳ j

(
π(Y = 1)

λ

)
lY=1 − (1 − ȳ j)

(
π(Y = 0)

1 − λ

)
lY=0

]2

≈
n2

4γ

∑
j∈ΠX

[
P( j|Y = 1)π(Y = 1)lY=1 − P( j|Y = 0)π(Y = 0)lY=0

]2 . (15)

Expectation of influence statistic

I(X) = 0.5n−1
∑
j∈ΠX

(n1 j − n0 j)2

E(I(X)/n) =
1
2

∑
j∈ΠX

[
( f1( j) − f0( j))2 +

1
n

f1( j)(1 − f1( j)) +
1
n

f0( j)(1 − f0( j))
]

≈ 0.5
∑
j∈ΠX

( f1( j) − f0( j))2

E((I(X)/n)2) =
1
4

 (n − 1)2

n2

∑
j, j′

( f1( j) − f0( j))2( f1( j′) − f0( j′))2

+
4
n

∑
j

( f1( j) − f0( j))2

+
4
n

∑
j

( f1( j) + f0( j))( f1( j) − f0( j))2

+
4
n

∑
x

f1( j)( f0( j) − f1( j))


∑

j

f 2
1 ( j)


+

4
n

∑
j

f0( j)( f1( j) − f0( j))


∑

j

f 2
0 ( j)

 + O(
1
n2 )



Variance of influence statistic

var(I(X)/n) =
1
4

4
n

∑
j

( f1( j) − f0( j))2

−
2
n

∑
j

( f1( j)(1 − f0( j))
∑

j

( f1( j) − f0( j))2
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−
2
n

∑
j

( f0( j)(1 − f1( j))
∑

j

( f1( j) − f0( j))2

+
4
n

∑
j

( f1( j) + f0( j))( f1( j) − f0( j))2

+
4
n

∑
j

f1( j)( f0( j) − f1( j))


∑

j

f 2
1 ( j)


+

4
n

∑
j

f0( j)( f1( j) − f0( j))


∑

j

f 2
0 ( j)

 + O(
1
n2 )


=

1
n


∑

j

f0( j) f1( j)

∑
j

( f1( j) − f0( j))2

+
∑

j

( f1( j) + f0( j))( f1( j) − f0( j))2

+

∑
j

f1( j) f0( j)


∑

j

f 2
1 ( j) +

∑
j

f 2
0 ( j)

 −
∑

j

f 2
1 ( j)


2

−

∑
j

f 2
0 ( j)


2

+ O(
1
n2 )

=
1
n

2

∑
j

f0( j) f1( j)

∑
j

( f1( j) − f0( j))2

+
∑

j

( f1( j) + f0( j))( f1( j) − f0( j))2

+2

∑
j

f1( j) f0( j)


2

−

∑
j

f 2
1 ( j)


2

−

∑
j

f 2
0 ( j)


2

+ O(
1
n2 )

Simulation details

We provide further details on the three sets of simulations presented in this article. As noted before, we vary several

parameters throughout the simulations. Observations n are drawn from the set {200, 400, 1600}. Covariates k are

drawn from the set {10, 100, 200}. We generate covariates either from Bernoulli, Gaussian (normal), or mixture of

two distributions. Possible outcome models are linear “LN”, nonlinear “NL”, linear with joint effects “LNJ”, and

nonlinear with joint effects.

In screening, covariates are only discretized for I screening, not for SIS. Covariates are screened for all marginal

and all 2-way interactions for I. To calculate the main statistic of interest, the proportion of true influential covari-

ates captured, we use the following: 1) for marginal effects only cases: all covariates captured by the screening

approach, divided by true list of influential covariates in the model. 2) for marginal + joint or joint-only cases: all
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covariate sets, accurately captured, divided by the true list of influential covariate sets in the model.

The data generating processes for the models are provided below:

1. Linear model (Simulations 1 and 3): proportion of important covariates out of total are (.3, .03, .015)

p =
1

1 + exp(−β1X1 − β2X2 − β3X3)

Y ∼ Bern(p)

2. Nonlinear model (Simulations 1 and 3): proportion of important covariates out of total are (.3, .03, .015)

p =
1

1 + exp(0.3 − sin(X1 · X2) + X2
3

Y ∼ Bern(p)

3. Linear model with joint only (Simulations 2 and 3): proportion of important covariates out of total are

(.4, .04, .02)

p =
1

1 + exp(−0.2 − β1X1 · X2 + X3 · X4

Y ∼ Bern(p)

4. Nonlinear model with joint only (Simulations 2 and 3): proportion of important covariates out of total are

(.4, .04, .02)

p =
1

1 + exp(0.1 − sin(X1 · X2) + cos(X3 · X4))

Y ∼ Bern(p)
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